
Поділимо монети на 3 групи: 21, 21 і 19. На терези покладемо перші 2 групи по 21 монеті, а третю групу з 19 монет відкладемо. При цьому можливі два випадки: чаші терезів урівноважені і неврівноважені. Розглянемо кожен з цих випадків.
1) Чаші врівноважені, отже, тяжча (фальшива) монета знаходиться серед 19 відкладених. Розділимо ці 19 монет на 3 групи (7, 7 і 5) і порівняємо на терезах вагу перших двох груп (це буде друге зважування). Знову може вийти, що: а) терези врівноважені; б) терези неврівноважені. У випадку а) фальшива монета серед 5 відкладених. З них під час наступних двох зважувань спочатку порівняємо 2 і 2 монети, відкладаючи п'яту. Якщо п'ята не фальшива, тоді зважимо дві монети з тієї чаші терезів, що перетягнула. Якщо терези неврівноважені (випадок б), тоді фальшива монета знаходиться серед 7 монет. Розділимо цю групу на 3, 3 і 1 монету і покладемо на терези по 3 монети і т. д. І в цьому випадку для розв'язання необхідно 2 зважування - не більше.
2) Чаші з монетами (на кожній по 21) неврівноважені. Відкладаємо 7 монет. Це буде друге зважування. Отож, і в цьому випадку потрібно чотири зважування. У цьому випадку, коли з умови не випливає вага предмета (легший він або тяжчий за інші), для його виявлення потрібно, як правило, зробити додаткове зважування. Так, у задачі про виявлення серед 9 монет однієї фальшивої (невідомо, легша вона або тяжча в порівнянні з теперішньою) двома зважуваннями не обійтись. Доведеться "переважувати " монети тричі. Інколи в таких задачах дещо змінюють, наприклад, введенням виокремленого числа гир певної ваги.
Ще немає коментарів...
Тут може бути будь-який контент: статистика, реклама, список тегів, банер, тощо.